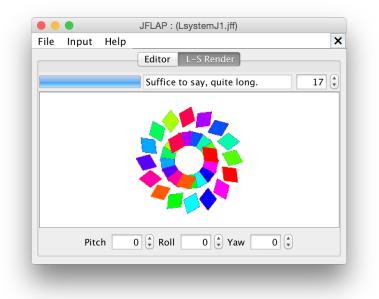
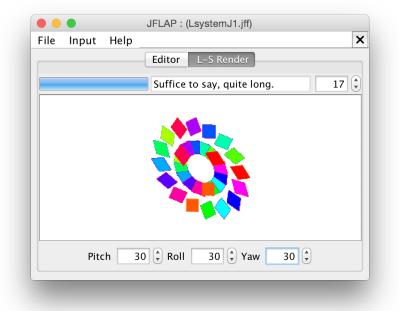
Example: L-System (simple)_{JP}

Consider the following definition of a simple L-System.

ile In	out ⊦	lelp	>
		Editor	
Axiom:	w		
Table T	ext Siz	<u>-</u>	
LHS		RHS	
W	\rightarrow	[## ## W X f f X + + + f f W]
X	\rightarrow	[{ - g + + g % g }]	
		c	
Name		Parameter	
distance		20	
polygonC	olor	yellow	
angle		37.5	

Predict the graphical outcome of this system.


- What do you expect the appearance to be of a single iteration?
- What changes will occur prior to the next iteration?
- What pattern do you expect to emerge?
- How many derivations do you expect to need to create a complete cycle? Enter and run the L-System in JFLAP.


Compare your predictions with the actual results.

• What accounts for any differences between the predicted and actual display? Experiment with the view by modifying Pitch, Roll, and Yaw.

Sample Solution (see: LSystemJ1.jff)

Sample Run Using Input > Render System

